42 research outputs found

    An inverse inviscid method for the design of quasi-three dimensional rotating turbomachinery cascades

    Get PDF
    A new inverse inviscid method suitable for the design of rotating blade sections lying on an arbitrary axisymmetric stream-surface with varying streamtube width is presented. The geometry of the axisymmetric stream-surface and the streamtube width variation with meridional distance, the number of blades, the inlet flow conditions, the rotational speed and the suction and pressure side velocity distributions as functions of the normalized arc-length are given. The flow is considered irrotational in the absolute frame of reference and compressible. The output of the computation is the blade section that satisfies the above data. The method solves the flow equations on a (phi 1, psi) potential function-streamfunction plane for the velocity modulus, W and the flow angle beta; the blade section shape can then be obtained as part of the physical plane geometry by integrating the flow angle distribution along streamlines. The (phi 1, psi) plane is defined so that the monotonic behavior of the potential function is guaranteed, even in cases with high peripheral velocities. The method is validated on a rotating turbine case and used to design new blades. To obtain a closed blade, a set of closure conditions were developed and referred

    Modelling wake effects in large wind farms in complex terrain: the problem, the methods and the issues

    Get PDF
    Computational fluid dynamic (CFD) methods are used in this paper to predict the power production from entire wind farms in complex terrain and to shed some light into the wake flow patterns. Two full three-dimensional Navier–Stokes solvers for incompressible fluid flow, employing k − ϵ and k − ω turbulence closures, are used. The wind turbines are modeled as momentum absorbers by means of their thrust coefficient through the actuator disk approach. Alternative methods for estimating the reference wind speed in the calculation of the thrust are tested. The work presented in this paper is part of the work being undertaken within the UpWind Integrated Project that aims to develop the design tools for next generation of large wind turbines. In this part of UpWind, the performance of wind farm and wake models is being examined in complex terrain environment where there are few pre-existing relevant measurements. The focus of the work being carried out is to evaluate the performance of CFD models in large wind farm applications in complex terrain and to examine the development of the wakes in a complex terrain environment

    CFD modelling of wind farms in complex terrain

    Full text link
    Modelling of entire wind farms in flat and complex terrain using a full 3D Navier–Stokes solver for incompressible flow is presented in this paper. Numerical integration of the governing equations is performed using an implicit pressure correction scheme, where the wind turbines (W/Ts) are modelled as momentum absorbers through their thrust coefficient. The k–ω turbulence model, suitably modified for atmospheric flows, is employed for closure. A correction is introduced to account for the underestimation of the near wake deficit, in which the turbulence time scale is bounded using a general “realizability” constraint for the fluctuating velocities. The second modelling issue that is discussed in this paper is related to the determination of the reference wind speed for the thrust calculation of the machines. Dealing with large wind farms and wind farms in complex terrain, determining the reference wind speed is not obvious when a W/T operates in the wake of another WT and/or in complex terrain. Two alternatives are compared: using the wind speed value at hub height one diameter upstream of the W/T and adopting an induction factor-based concept to overcome the utilization of a wind speed at a certain distance upwind of the rotor. Application is made in two wind farms, a five-machine one located in flat terrain and a 43-machine one located in complex terrain

    Simulation of wind farms in flat and complex terrain using CFD

    Get PDF
    Use of computational fluid dynamic (CFD) methods to predict the power production from wind entire wind farms in flat and complex terrain is presented in this paper. Two full 3D Navier–Stokes solvers for incompressible flow are employed that incorporate the k–ε and k–ω turbulence models respectively. The wind turbines (W/Ts) are modelled as momentum absorbers by means of their thrust coefficient using the actuator disk approach. The WT thrust is estimated using the wind speed one diameter upstream of the rotor at hub height. An alternative method that employs an induction-factor based concept is also tested. This method features the advantage of not utilizing the wind speed at a specific distance from the rotor disk, which is a doubtful approximation when a W/T is located in the wake of another and/or the terrain is complex. To account for the underestimation of the near wake deficit, a correction is introduced to the turbulence model. The turbulence time scale is bounded using the general “realizability” constraint for the turbulent velocities. Application is made on two wind farms, a five-machine one located in flat terrain and another 43-machine one located in complex terrain. In the flat terrain case, the combination of the induction factor method along with the turbulence correction provides satisfactory results. In the complex terrain case, there are some significant discrepancies with the measurements, which are discussed. In this case, the induction factor method does not provide satisfactory results

    Computation of rotational transonic flows using a decomposition method

    No full text

    Novel scalar-vector potential formulation for three-dimensional, inviscid, rotational flow problems

    No full text

    Meridional Flow Calculation Using Advanced CFD Techniques

    No full text
    ABSTRACT Working experience on traditional Meridional Flow Solvers has revealed difficulties concerning both convergence and accuracy of the solution. These difficulties have been observed for instance in certain industrial applications where steep gradients of flow and/or geometrical quantities are present. Transonic flow conditions can cause extra difficulties. All these difficulties may be circumvented when advanced CFD techniques are utilized. A computational tool, suitable for the solution of the Meridional Through Flow equations for Turbomachinery applications is presented. Assuming that the flow is compressible and inviscid the governing equations are obtained using a streamfunction formulation for the pitch-averaged flow equations. Viscous corrections have been incorporated in the inviscid model in terms of flow angle deviation and total pressure losses. Governing equations, are discretized using body fitted finite difference schemes. An artificial density upwinding scheme assures convergence in the transonic region. Particular attention has been paid to the numerical integration procedure which is based on a preconditioned gradient method (GMRES). Calculation results for low and high-speed turbomachines are presented and discussed. NOMENCLATUR
    corecore